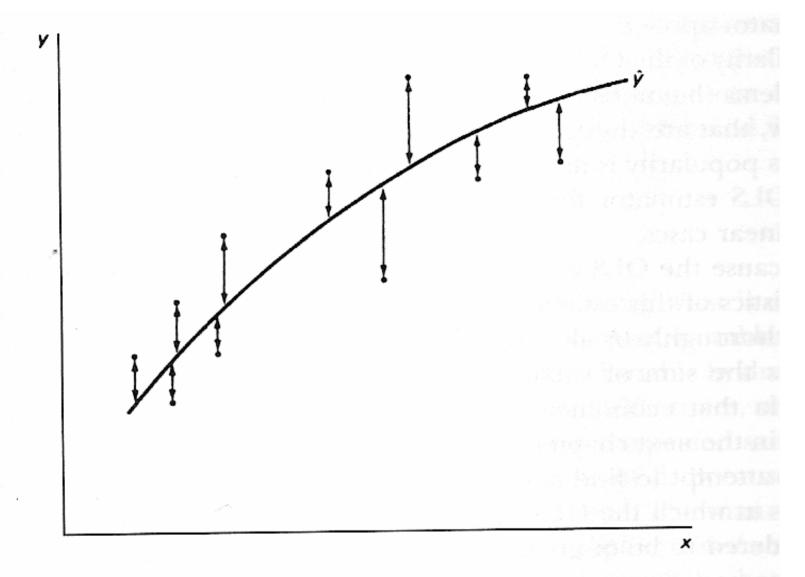
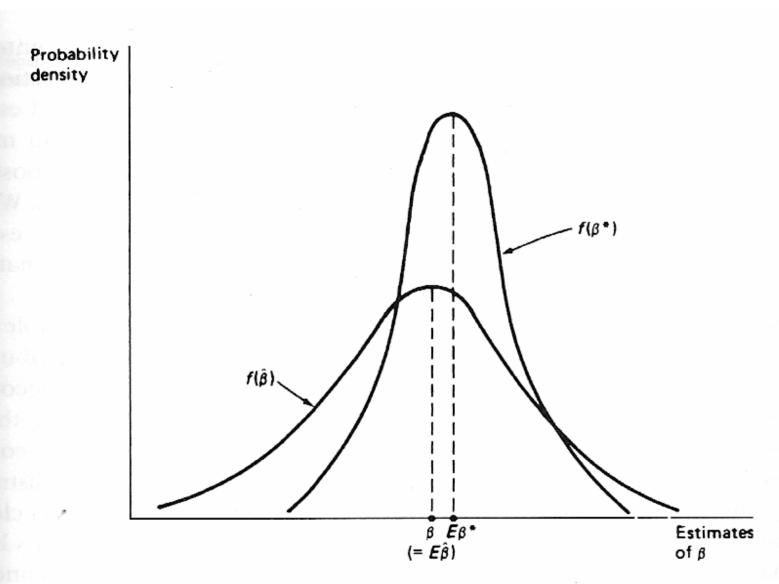
ECONOMETRIC TECHNIQUES FOR REVENUE FORECASTING USING EVIEWS

Session 2: Classical Linear Regression


Patrick Grady
Global Economics Ltd.

Introduction to Econometrics


- What is Econometrics?
 - Application of statistical methods to economic phenomena.
 - Provides statistical tests of economic theory.
 - Provides statistical tools for economic forecasting.
 - Key feature is stochastic disturbance term.
 - Develops estimators for parameters of economic relationships.

Criteria for Estimators

- Computational Cost
- Least squares
- Highest R²
- Unbiasedness
- Efficiency
- Mean Square Error (MSE)
- Assmptotic Properties
- Maximum Likelihood

Figure 2.1 Minimizing the sum of squared residuals Source: Peter Kennedy, *A Guide to Econometrics* (2003).

Figure 2.4 MSE trades off bias and variance Source: Peter Kennedy, *A Guide to Econometrics* (2003).

Table 3.1 The assumptions of the CLR model

		Mathematical expression		
Assumption		Bivariate	Multivariate	Violations
(1)	Dependent variable a linear function of a specific set of independent variables, plus a disturbance	$y_t = \beta_0 + \beta_1 x_t + \varepsilon_t,$ $t = 1, \dots, T$	$Y = X\beta + \varepsilon$	Wrong regressors Nonlinearity Changing parameters
(2)	Expected value of disturbance term is zero	$E\varepsilon_t = 0$, for all t	$E\varepsilon = 0$	Biased intercept
(3)	Disturbances have uniform variance and are uncorrelated	$E\varepsilon_{t}\varepsilon_{r} = 0, \ t \neq r$ $= \sigma^{2}, \ t = r$	$E\varepsilon\varepsilon'=\sigma^2I$	Heteroskedasticity Autocorrelated errors
(4)	Observations on independent variables can be considered fixed in repeated samples	x_i fixed in repeated samples	X fixed in repeated samples	Errors in variables Autoregression Simultaneous equations
(5)	No exact linear relationships between independent variables and more observations than independent variables	$\sum_{t=1}^{T} (x_t - \bar{x})^2 \neq 0$	Rank of $X = K \le T$	Perfect multicollinearity

The mathematical terminology is explained in the technical notes to this section. The notation is as follows: Y is a vector of observations on the dependent variable; X is a matrix of observations on the independent variables; E is a vector of disturbances; E is the variance of the disturbances; E is the identity matrix; E is the number of independent variables; E is the number of observations.

Source: Peter Kennedy, A Guide to Econometrics (2003), p.50.

Interval estimation and hypothesis testing

- Concept of confidence interval
 - dependent variable
 - Coefficients
- Hypothesis testing
 - T tests
 - Chow tests
 - More sophisticated tests on constraints

Specification

- In general, should be based on economic theory.
- But for revenues is simpler and should be based on tax law taking behaviour into account if necessary.
- Alternative specifications should be subjected to statistical tests and comparisons made.
- Sensitivity tests should be carried out.

Some Types of Mispecification Tests

- Omitted Variable Tests
- RESET Tests
- Tests for functional form
- Tests for structural change
- Tests for outliers
- Tests for non-spherical errors
- Tests for exogeneity