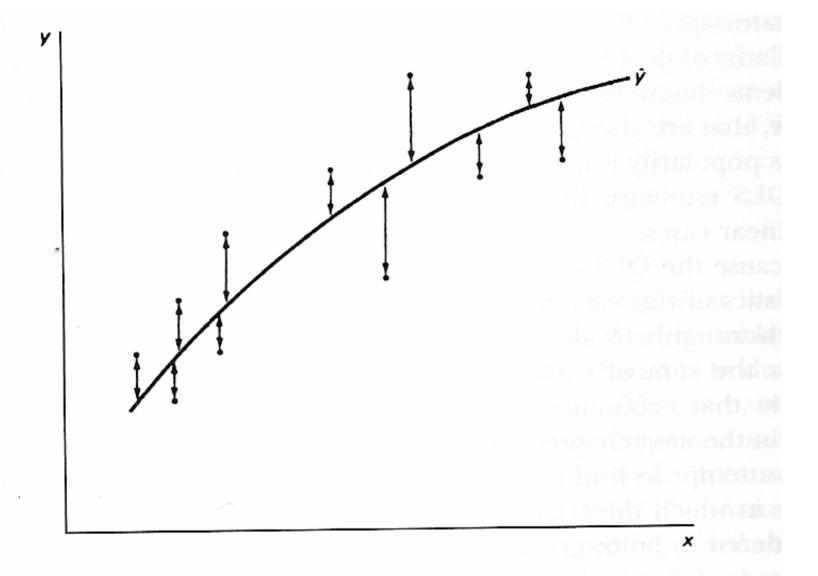
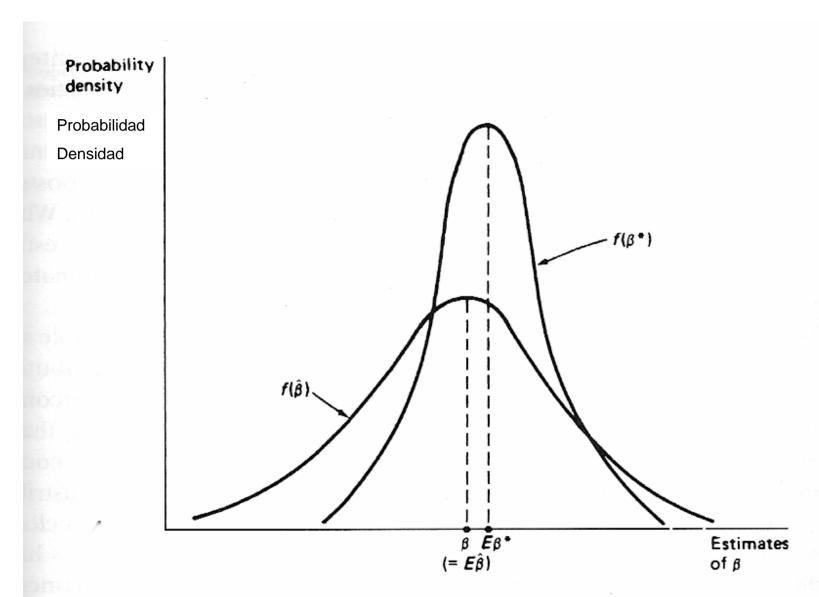
TÉCNICAS ECONOMÉTRICAS PARA PROYECCIONES DE INGRESOS UTILIZANDO EVIEWS

Sesión 2: Regresión Linear Clásica

Patrick Grady
Global Economics Ltd.


Introducción a Econometría

Que es Econometría?


- Aplicación de métodos estadísticos a el fenómeno económico.
- Provee pruebas estadísticas de teoría económica.
- Provee herramientas estadísticas para la proyección económica.
- Funcionalidad clave es término perturbador estocástico
- Desarrolla estimadores para los parámetros de relaciones económicas.

Criterios para Estimadores

- Costo Computacional
- Mínimos Cuadrados
- R² más alto
- Imparcialidad
- Eficiencia
- Error de Media Cuadrática (MSE)
- Propiedades Asintóticas
- Máximas Verosimilitudes

Figure 2. Minimizando la suma de los cuadrados residuales Fuente: Peter Kennedy, *Guide to Econometrics* (2003).

Figure 2.4 MSE trades off bias and variance Fuente: Peter Kennedy, *Guide to Econometrics* (2003).

Cuadro 3.1 Los Supuestos del Modelo de Regresión Lineal Clásico

Expresión Matemática			
Supuesto	Bivariable	Multivariable	Violaciones
(1) Variable dependiente es una función de un set especifico de variables independientes, mas un perturbador.	$y_t = \beta_0 + \beta_1 x_t + \varepsilon_t,$ $t = 1, \ldots, T$	$Y = X\beta + \varepsilon$	Regresores Equivocados Falta de linealidad Parámetros cambiantes
(2) Valor anticipado de un término perturbador es cero .	$E\varepsilon_t = 0$, para todas las t	$E\varepsilon = 0$	Interceptos cambiantes
(3) Perturbadores tienen una varianza uniforme y no están correlacionadas.	$E\varepsilon_{t}\varepsilon_{r} = 0, \ t \neq r$ $= \sigma^{2}, \ t = r$	$E\varepsilon\varepsilon'=\sigma^2I$	Heteroscedasticidad Errores autoregresivos
(4) Observaciones en variables independientes pueden ser consideradas fijas en muestras repetidas	X_l fija en muestras repetidas	X fija en muestras repetidas	Errores en variables Autoregresión Ecuaciones Simultaneas
(5) No hay relaciones lineales exactas entre variables independientes y mas observaciones que variables independientes.	$\sum_{t=0}^{T} (x_t - \bar{x})^2 \neq 0$	Rango de $X = K \le T$	Multicolinearidad perfecta
	Fuente: Peter Kennedy, Guide to Econometrics (2003).		

La notación se describe a continuación: Y es un vector de observaciones a las variables dependientes; X es una matriz de observaciones a las variables independientes; ε es un vector de perturbaciones; ε es la varianza de los perturbadores; ε la matriz de identidad; ε es el número de variables independientes; ε es el número de observaciones.

Estimaciones de Intervalos y Comprobación de Hipótesis

- Concepto de intervalo de confianza
 - Variable dependiente
 - Coeficientes
- Comprobación de Hipótesis
 - Contraste T
 - Contraste de predicción de CHOW
 - Evaluaciones mas sofisticadas en limitaciones

Especificación

- En general, debería basarse en teoría económica.
- Pero para ingresos es más sencillo y debería basarse en la ley impositiva tomando en cuenta comportamientos si así fuera necesario.
- Especificaciones alternativas deberían ser sujetas a evaluaciones estadísticas y comparaciones hechas.
- Evaluaciones de sensibilidad deberían de llevarse a cabo.

Algunos Tipos de Pruebas de Especificación Errónea

- Contraste de Variables Omitidas
- Contraste con la Prueba de Regresión Especificación Error
- Contraste para formas funcionales
- Contraste para cambio estructural
- Contraste para observaciones con valores extremos
- Contraste para errores no esféricos
- Contraste para exogeneidad